Julian M. Urban, Ph.D.

Research Scientist, Machine Learning

Postdoctoral Associate at MIT

SUMMARY

Computational physicist with 6 years of experience in designing artificial intelligence models and stochastic sampling algorithms for the simulation of complex systems and associated statistical analysis of large datasets. Pioneering applications of modern machine learning and probabilistic modeling techniques in numerical quantum field theory research with a focus on generative deep neural network architectures and Gaussian process regression. Leading and contributing to scientific software projects in several interdisciplinary collaborations, ranging from the development of reference libraries for statistical inference methods to the implementation of highly parallelized simulation code deployed on exascale HPC platforms with thousands of GPU nodes.

🗲 jurban@mit.	edu 🛛 🖌 jmurban@pm.me
L +1 617 401 52	278 🔇 lettucefield.org
Boston, USA	github.com/julian-urban
EXPERTISE —	
Conceptual	AI/ML, probabilistic modeling, statistical in- ference, stochastic processes, MCMC al- gorithms, molecular dynamics simulations, numerical optimization
Programming	Proficient: scientific Python (numerical / ML libraries including PyTorch, NumPy, SciPy) Basics: C++, Bash, PHP, SQL, Mathematica
Technologies	GNU/Linux, HPC scheduling (Slurm, PBS), AIMHub, Git, Jupyter, Emacs, Mattermost
Languages	English, German (native)

ACADEMIC POSITIONS —

2022 - current	Postdoctoral Associate, Center for Theoretical Physics	МІТ
2021 - 2022	Research Affiliate, Laboratory for Nuclear Sciences	МІТ
2020 - 2022	Research and Teaching Assistant, Institute for Theoretical Physics	U Heidelberg
2013 - 2015	Laboratory Assistant, Kirchhoff Institute for Physics	U Heidelberg
EDUCATION		
2018 - 2022	Ph.D., Machine learning for computational quantum field theory	U Heidelberg
2015 - 2018	M.Sc., Machine learning for computational quantum field theory	U Heidelberg
2012 - 2015	B.Sc., Detector physics for collider experiments	U Heidelberg
NON-ACADEMIC V	WORK	
2010 - 2013	Software Developer, Web/Database Applications	DLI Trier
SELECTED PUBLIC	CATIONS	
arXiv:2203.01243	Flow-based density of states for complex actions	Phys.Rev.D
arXiv:2107.13464	Reconstructing QCD spectral functions with Gaussian processes	Phys.Rev.D
arXiv:2003.01504	Towards novel insights in lattice field theory with explainable machine learning	Phys.Rev.D
arXiv:1811.03533	Reducing autocorrelation times in lattice simulations with generative adversarial networks	1ach.Learn.Sci.Tech.
INVITED TALKS		
11/2023	Workshop, Large-scale lattice QCD simulation and application of machine learning	U Tsukuba
9/2023	Conference, European network for particle physics, lattice field theory and extreme computing	HU Berlin
5/2023	Seminar, Institute for Nuclear Theory	U Washington
3/2023	Seminar, Applied Mathematics	UC Berkeley
MISCELLANEOUS		
Contributor	Found and fixed a high priority issue in torch.distributions.von_mises.VonMises	GitHub/PyTorch
Organizer	Organized an interdisciplinary workshop on Machine Learning and the Renormalization Group	ECT* Trento
Mentor	Advised students on five Bachelor's and four Master's thesis projects during Ph.D.	U Heidelberg